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double-well potential

V. A. Benderskii1,2 and E. I. Kats3,4

1Institute of Problems of Chemical Physics, RAS, 142432 Moscow Region, Chernogolovka, Russia
2Laboratoire Spectrometrie Physique, UJF, Boiˆte Postale 87, St. Martin d’Heres Cedex, France

3Laue-Langevin Institute, F-38042 Grenoble, France
4 L. D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia

~Received 21 July 2001; published 21 February 2002!

For a model one-dimensional asymmetric double-well potential we calculated the so-called survival prob-
ability ~i.e., the probability for a particle initially localized in one well to remain there!. We use a semiclassical
~WKB! solution of the Schro¨dinger equation. It is shown that behavior essentially depends on transition
probability, and on a dimensionless parameterL that is a ratio of characteristic frequencies for low-energy
nonlinear in-well oscillations and interwell tunneling. For the potential describing a finite motion~double-well!
one has always a regular behavior. ForL!1, there are well defined resonance pairs of levels and the survival
probability has coherent oscillations related to resonance splitting. However, forL@1 there are no oscillations
at all for the survival probability, and there is almost an exponential decay with the characteristic time
determined by Fermi golden rule. In this case, one may not restrict himself to only resonance pair levels. The
number of levels perturbed by tunneling grows proportionally toAL ~in other words, instead of isolated pairs
there appear the resonance regions containing the sets of strongly coupled levels!. In the region of intermediate
values ofL one has a crossover between both limiting cases, namely, the exponential decay with subsequent
long period recurrent behavior.
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I. INTRODUCTION

Double level systems and models appear in various c
texts in physics, chemistry, and biology. The recurrent in
est in the topic is related mainly with fairly rich and inte
esting physics of the systems, and with the experime
activity on several classes of systems that can be viewe
good physical realization of double level models~including
fashionable quantum dots, see, e.g., Ref.@1#!. Among the
possible types of behavior, we will particularly be concern
with coherent oscillations and incoherent~dissipativelike!
tunneling. Our goal is to propose a simple mathemat
model to illustrate crossover from coherent oscillations
dissipative tunneling~decay or relaxation!, which are also
related to incoherent transitions in multidimensional osci
tor systems. In a certain sense this crossover reveals m
features of chaotic behavior. It is a common fact now t
classical chaos is defined as extreme complexity of the
jectories in phase space, with the trajectories being very
sitive to small changes in the initial conditions@2,3#. It is
evident that the state vector~wave function! of a closed
quantum system strictly speaking does not exhibit cha
motion, as a consequence of the unitary nature of time e
lution. But, in fact, since in quantum mechanics trajector
in the phase space cannot be introduced due to Heisen
uncertainty principle, the standard classical concept of
stability becomes ambiguous~see, e.g., Refs.@4–8#!.

We put forward a simple~but yet nontrivial! model of
one-dimensional~1D!asymmetric double-well potential tha
can be used to describe under relatively weak assumptio
crossover from coherent oscillations~say mechanical behav
1063-651X/2002/65~3!/036217~7!/$20.00 65 0362
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ior! to incoherent decay or dissipative tunneling~say ergodic
behavior!. The essential part of the model we will present
to illustrate this semiclassical quasichaotic behavior. In fa
the illustration was made long ago by Fermi, Pasta, a
Ulam @9#. They performed computer studies of energy sh
ing and ergodicity for weakly coupled systems ofN oscilla-
tors. Later on, the results of Ref.@9# were confirmed and
refined ~see, e.g., Refs.@10,11#!. But all these papers wer
devoted to systems with many degrees of freed
@(N@1)-dimensional phase space# for the cases where th
motion is nearly integrable and irregular in different ener
regions. Level statistics for such kind of mixed systems~i.e.,
when behavior is regular and chaotic in different phase sp
regions! changes gradually from Poisson to Wigner type
distributions@12–14#. Thus these systems become nonin
grable when the energy exceeds a certain critical value.
the contrary, we will propose and investigate in 1D a cons
vative system with time independent Hamiltonian that is e
dently always integrable, and it does not generate class
chaos.

For the sake of completeness let us note that the tunne
in the mixed~i.e., regular-chaotic! systems has been studie
as well for two-level systems when one of the levels intera
with a chaotic state@15,16# ~see also review@17# and refer-
ences therein!. In the case of a resonance between the t
neling doublet and suitable chaotic states, the tunneling
enhanced~so-called chaos assisted tunneling! and has very
strong resonance dependence on quantum numbers. Si
effects due to transverse vibrations take place for isola
Fermi resonances in tunneling systems@18#.

Our paper has the following structure. Section II conta
basic equations necessary for our investigation. Section I
©2002 The American Physical Society17-1
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devoted to the calculation of the so-called survival proba
ity. We use the semiclassical approach@19# ~see also Ref.
@20# and references herein!. Section IV contains the sum
mary. The Appendix is devoted to the technical and metho
cal details of the calculations.

II. ASYMMETRIC 1D DOUBLE-WELL POTENTIAL

The simple model studied in this paper consists of a qu
tum particle in one-dimensional asymmetric double-well p
tentialU(X) with one-parameter dependent shape. Using
tunneling distancea0 and the characteristic frequency of th
oscillations around the left minimumV0, we can introduced
the so-called semiclassical parameterg[mV0a0

2/\@1 (m is
a mass of a particle, and further we will set\51 measuring
energies in the units of frequency!, which is assumed to be
sufficiently large, i.e., the tunneling matrix element should
small in V0 scale. The choice of the model potential is d
tated by the principle of minimal requirements. Our aim is
describe, in the framework of one universal model, the cro
over from symmetric double-well potential to the so-call
decay potential, and to do it we need a parameter to make
right well (R well! deeper and wider than the left well (L
well!.

Using V0 and a0 to set corresponding scales, the mod
potential satisfying these minimal requirements can be w
ten in the following dimensionless form:

V~x!5
1

2
x2~12x!F11

1

b2
xG , ~1!

where V[U/(V0g), and x[X/a0. The dimensionless pa
rameterb allows us to change the shape of the right wellR
well!, and to consider both limiting cases, namely, a tra
tional symmetric double-well potential~for b51), and for
b→` a decay potential~or, in other words, to change th
level spacings fromV0

21 scale to zero!. In fact, it can be
shown ~see below and the Appendix! that qualitatively all
our results do not depend on the concrete form of the
parametric potential satisfying these requirements~only on
the density ofR states!. Behavior in both limiting cases ar
well known, and forb51 one has coherent quantum osc
lations, typical for any two-level systems, while forb→`
there is a continuum spectrum of eigenstates forx→1` and
one can find an ergodic behavior~incoherent decay!. Our
main goal in this section is to study crossover between b
limits at variations ofb.

The general procedure for searching semiclassical s
tions of the Schro¨edinger equation with the model potenti
~1! has a tricky point. The fact is that in theL well we have
a discrete eigenvalue spectrum~stationary states! while for
the R well in the caseb@1 we have quasistationary state
which are characterized by wave functionsCn(X) exponen-
tially increased in the region of«@V(X). Both kind of states
are defined on different sheets of complex energetic surfa
@19#, and to treat both kind of states one should use differ
tools, namely, the standard quantization of the station
states from the discrete part of the spectra@19#, and proposed
long ago by Zeldovich@21# for quasistationary states the flu
03621
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probability conservation law, which leads to the Lorentzi
envelope for spectral distribution functions. Unlike Ref.@21#,
in our case, we get the Lorentzian envelope filled byd peaks
of the final states.

The procedure is described in the Appendix, and it
cludes three steps~see Refs.@19,21#, and we will use nota-
tions from Ref.@20#!.

~a! First, one should find the actionWL in the classically
allowed region~i.e., WL between turning points! in the left
well (L well!, and apply the semiclassical quantization. F
the low-energy states in theL well it leads to the following
relation:

gWL5pFn1
1

2
1xnG[p«n , ~2!

where, integer numbersn numerate eigenvalues,xn is deter-
mined by an exponentially small phase shift, and the l
term on the right-hand side of Eq.~2! is in fact the definition
for eigenvalues«n .

~b! Second, the same should be done for the right wellR
well!. The calculation is almost trivial in the limitb@1
@when the potential~1! becomes strongly asymmetric#

gWR5gWR
(0)1pb«, ~3!

where the dimensionless energy« is counted from the bot-
tom of theL well, the actionWR

(0) is

gWR
(0)5

p

16b
~b221!2~b211!, ~4!

and

b5
b211

b
.b for b@1. ~5!

Note that the parameterb52V0 /vR is proportional to the
density of states in theR well (vR is the frequency of non-
linear oscillations inR well at «50), and, therefore, know-
ing the magnitudeb one can compute the density of states
the R well, which grows proportional tob for b@1. It is
convenient to rewrite Eqs.~3!, ~4! in the same form as Eq
~2!,

gWR5pFnR1
1

2
1an1bxG , ~6!

wherenR andan are integer and correspondingly fraction
parts of the quantity

gWR
(0)

p
1bS n1

1

2D2
1

2
. ~7!

The physical meaning ofan is the deviation from a reso
nance between thenth level in theL well and the neares
level in the R well. By the definition of a fractional par
uanu,1/2b.

~c! And as the last step, again using the quantization r
one can find the spectrum.
7-2
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It turns out~see Appendix! that the spectrum and the be
havior of the system depends crucially on the parameteL
[bRn , where

Rn5
2n12gn11/2

p1/2n!
exp~22gWB!, ~8!

is theb independent decay rate of thenth metastable state o
the L well at b→` @WB is the action in the classically for
bidden~between turning points! region#.

For L!1, solving the quantization relation~A2!, one can
easily find

«n65n1
1

2
6

1

2b FAan
21

4

p2
L2anG . ~9!

This expression~9! determines the resonance pairs of t
levels, the so-called two-level systems.

Besides the same quantization rule~A2! we get analyti-
cally ~i.e., for arbitrary values ofL) eigenvalues for theR
well in the vicinity of the resonance doublet

«nm5n1
1

2
1

1

2b FA~m2an!21
4

p2
L2~m2an!G ,

m561,62, . . . . ~10!

These levels are numerated by the quantum numberm.
For L!1, all displacements of the levels due to tunneli

are small, and two-level system approximation is valid@i.e.,
there is well defined isolated resonance pairs of levels w
splitting }(Rn /b)1/2#. The situation becomes completely di
ferent forL>1. In the limitL@1, we get almost equidistan
spectrum of mixedL-R levels in the vicinity of the following
values ofx ~see Appendix for the details!

x[xnm56
m11/22an

b F11
1

pLG . ~11!

The expressions~10!, ~11! given above show that th
number of levels perturbed by tunneling grows proportio
ally to AL. In Fig. 1 we have shown the displacements of
levels perturbed by tunneling. These displacements are
creased very rapidly for the levels with quantum numb
larger thanAL. The scales in this figure are given by th
semiclassical parameterg that relates to theL well and the
barrier. Once the scales are fixed theR well is characterized
by the eigenfrequency}1/b at «50 ~or what is the same by
the density of states or by the actionWR in the R well!.

Summarizing the results of this section, we have sho
that instead of isolated two-level systems taking place
L!1, in the opposite limitL@1 there appear the resonan
regions containing the sets of strongly coupled levels. T
resonance widths are determined by tunneling matrix
ments @H12

2 5vLvRexp(22gWB)/4p25Rn /b#. In spite of
the fact that for any finite values ofL ~andb) we have only
the discrete spectrum of real eigenstates, we found above
mixing of L-R states very closely resembles the represe
03621
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tion of quasistationary states in terms of eigenstates o
continuous spectrum. This behavior can be formulated
other words, in terms of the so-called recurrence time, i
the characteristic time when the system returns to the in
state. For a finite motion~i.e., for a finite value ofb) the
behavior of the system remains regular. The recurrence t
~i.e., in the case of merely coherent oscillation period! is
proportional to 1/H12 for L!1, while for L@1 this time
scales as 1/vR ~as a long-period time scale!.

III. SURVIVAL PROBABILITY

The tunneling dynamics can be characterized by the t
evolution of the initially prepared localized stateC(0), and
by the definition the survival probability of the state is

P~ t ![u^C~0!uC~ t !&u2. ~12!

For the stationary states evidentlyP(t)51, while for quasis-
tationary~decaying states!, the survival probability reads

P~ t !5exp~2Gt !, ~13!

whereG is the decay rate that should be found, and we
vR

21 for the time scale.
The simplest case is the coherent tunneling dynamics

two-level states. Let us consider then2n8 resonance region
The eigenfunctions of isolatedR andL wells, Cn

L , andCn8
R .

If one has the initial state

C~0!5Cn
L ,

the survival probability can be easily calculated

P~ t !5
1

2 F11cosS 2tARn

b D G . ~14!

Normalized wave functions in theL well can be calcu-
lated trivially, and using standard semiclassical wave fu

FIG. 1. The eigenvalues as functions ofL for the zero-point
level (n50) of the L well. Dashed lines indicate the limits ofL
!1, andL@1; g510, a050.
7-3
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V. A. BENDERSKII AND E. I. KATS PHYSICAL REVIEW E65 036217
tions for theR well, we are in a position to compute th
survival probability for a general case as a function ofL.
The results are shown in Fig. 2.

For L!1, P(t) oscillates with characteristic time scale
proportional toH12

215Ab/Rn. In the regionL.1, these os-
cillations are strongly suppressed. The reason for the s
pression of oscillations is related to interference of the sta
with energies in the resonance region. As a result of
interference the total probability for the system to retu
back from theR well is decreased, and low-frequency mod
lation of coherent tunneling is raised. The period of t

FIG. 2. The survival probability for different values ofL and
g510. ~a! L50.02, b55 ~solid line!; L50.5, b5116 ~dashed
line!; ~b! L50.5, b5116 ~solid line!; L54.0, b5929 ~dashed
line!; ~c! L54.0, b5929 ~solid line!; L516.0, b53715 ~dashed
line!.
03621
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modulation grows withb, and in the limitL@1 we get the
dense spectrum of states in theR well, and almost exponen
tial decay forP(t) with b independent relaxational timet
}Rn

21 . In this case, the survival probability~i.e., the prob-
ability to keep the system in its initial state! for the time
interval !1/vR decays almost exponentially with time, an
the characteristic relaxation timet is determined by Ferm
golden rule, i.e.,t21}H12

2 /vR . This result is also conformed
to Van Hove statement@22# concerning quasichaotic behav
ior of semiclassical systems at time scales of the orde
vR /H12

2 .
We can relate the phenomenom described above~i.e., al-

most vanishing probability for backflow from theR to L
well! to the Fermi golden rule for a transition probability

Wf i52puH f i u2r f , ~15!

whereHi f is the matrix element between the initial stateEi
and the final stateEf , andr f is the density of final states
For our case (Hi f [H125ARn /b, andr f5b/2) we get eas-
ily

Wi f 5pRn ,

which does not depend onr f . Therefore, the Fermi golden
rule corresponds to the limit when the backflow from theR
well is totally suppressed due to the interference.

The survival probability can be related also to spect
distribution of the initially localized in theL well states.
Indeed, by the definition of the spectral distributionS(E) of
the initially prepared localized state is determined by
transition amplitudes in expansion over the eigensta
(Cn ,En),

S~E!5(
n

u^C~0!uCn&u2d~E2En!, ~16!

and, therefore,

^C~0!uC~ t !&5E
2`

1`

S~E!exp~2 iEt !dE. ~17!

For C(0)[C i
L the spectral distribution is a set ofd peaks

with Lorentzian envelope

S~E!5
2

p

ARib

b~E2Ei !
21Ri

d~E2Ei !. ~18!

Crossover from the coherent oscillations to exponential
cay occurs when the Lorentzian envelope begins to fill up
d peaks of the final states. Note that the width of the Lore
zian envelope~18! does not depend on the final state dens
~see Appendix and also Ref.@21#!. We have shown the re
sults of the calculation of the spectral distribution in Fig.

IV. CONCLUSION

Let us sum up the results of our paper. We investigated
behavior of a quantum particle in 1D asymmetric doub
well potential with one-parameter dependent shape, wh
7-4
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COHERENT OSCILLATIONS AND INCOHERENT . . . PHYSICAL REVIEW E 65 036217
allows us to consider in the framework of one univer
model the crossover from the traditional symmetric doub
well potential to the decay one. We have shown that beha
essentially depends on transition probability, and on a dim
sionless parameterL that is a ratio of characteristic frequen
cies for low-energy nonlinear in-well oscillations and inte
well tunneling. For the potential describing a finite motio
~double well!, strictly speaking, one has always a regu
behavior. ForL!1, there are well defined resonance pairs
levels and the survival probability has coherent oscillatio
related to resonance splitting. However, forL@1 there are
no oscillations at all for the survival probability, and there
almost an exponential decay with the characteristic time
termined by Fermi golden rule. In this case, one may
restrict himself to only resonance pair levels. The numbe
levels perturbed by tunneling grows proportionally toAL ~in
other words, instead of isolated pairs there appear the r
nance regions containing the sets of strongly coupled leve!.
In the region of intermediate values ofL one has a crossove

FIG. 3. The spectral distribution for different values ofL and
g510. ~a! L50.02, b55; ~b! L54.0, b5929; ~c! L520.0, b
54644.
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between both limiting cases, namely, the exponential de
with subsequent long period recurrent behavior.

However, a number of remarks related to our results ar
order. Many features often classified as evidences of qu
tum chaos, in fact, as we have illustrated in our model, c
occur for well defined states possessing only discrete en
levels. The deviation from two-level system behavior, taki
place forL@1, has nothing to do with random or chaot
properties of the system. It means only that due to w
known phenomenom of level repulsion the two-level a
proximation is not adequate. Lorentzian envelope~see Fig.
3! we found arises from the interaction of a single level inL
well with a set of levels in theR well and not with appear-
ance of level widths~imaginary self-energy contributions!.

One should distinguish between short-time and long-ti
behavior, and the boundary between them depends on
parameterL. Short-time returns (}b) are governed by one
or a small number of semiclassical paths, while long-tim
returns (}Rn

21) arise from interference between many path
In the limit L!1, exponential decay occurs for short-tim
dynamics, while the system remains regular for long-tim
scales, in contrast with chaotic models we discussed in
Introduction. Nevertheless, the tunneling in the limit ofL
@1 can induce vibrational relaxation for localizedR levels.
The relaxation appears due to tunneling recurrences, an
sults in redistribution of initial energy over all levels couple
with a singleL level.

The main physical idea of our paper, namely, that spec
quasichaotic behavior is associated with the fact that
level in L well in a certain condition (L@1) is coupled to a
set of almost dense levels in theR well, was discussed in the
literature long ago@22# ~see also Ref.@21#!, mainly qualita-
tively. Our achievement is that we have proposed a conc
and tractable analytical model to illustrate and to investig
explicitly and quantitatively this statement.

In this respect our results are quite different from nume
cal investigations of billiard-type systems~see, e.g., review
paper@17#!, showing universal behavior of level spacings
finite chaotic systems. Our results~for the totally integrable
1D model! demonstrate that level spacing distribution is n
a specific feature of quantum systems with chaotic class
counterpart limit. Our finding of the equidistant regular lev
distribution is a result of the interaction of the singleL level
with several~of the order of ten for our particular choice o
the parameters! R levels ~which in own turn are regular
ones!. We should also distinguish our model from the d
namic tunneling ones@23,24#. The latter assumed strong cou
pling of the tunneling system with an environment that d
stroys the coherence, whereas in our model the coheren
destroyed by the tunneling itself due to the high density oR
states, breaking two-level approximation.

Note also at the very end of the paper that results p
sented here are not only interesting in their own right~at
least in our opinion!, but they might be directly tested ex
perimentally since there are many molecular systems wh
the 1D asymmetric potential investigated in the paper i
reasonable model for the reality. And not only molecu
systems, for instance, recently as a controllable two-le
system, double quantum dots have also been proposed
7-5
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V. A. BENDERSKII AND E. I. KATS PHYSICAL REVIEW E65 036217
realizing a single quantum bit in solid state systems. Exp
mentally @1#, in these systems two distinct regimes char
terizing the nature of low-energy dynamics have been
served: ~i! relaxational regime, when an excited-sta
electron population decays exponentially in time with a r
correctly given by Fermi golden rule;~ii ! vibronic regime,
when the population oscillates for some number of cyc
before decaying.

And what’s more, at short times the averaged excit
state populations oscillate but have a decaying envelope.
similarity with the behavior we found in the paper
evident.1
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APPENDIX

The semiclassical wave function is represented in the w
known WKB form2

C5exp~ iW!.

The actionW should satisfy to the WKB equation

1

2 S dW

dX D 2

5
«

g
2V~X!, ~A1!

and two turning points, which are boundaries of classica
allowed regions, are situated near zeros ofV(X)2«/g.

For the asymmetric double-well potential~1! the Bohr-
Sommerfeld@19# quantization equations read

tan~gWL!tan~gWR!54exp~2gWB!, ~A2!

whereWB is the action in the classically forbidden region
between the turning pointsX1 ,X2 in the left and right wells,
andWL,R are the coordinate independent actions in the c
sically allowed regions inside of theL ~respectivelyR) well.
Using the following expansion:

tanz5 (
m50

`

2zFz22p2S m1
1

2D 2G21

,

1All characteristics of our model are not specific only for the 1
case. ForL@1, one can expect similar behavior for multidime
sional systems.

2Equivalently, it can be represented in the so-called instanto
minimum action tunneling path formalism@25# ~see also Ref.@20#!
in the form ofC5exp(2gWE), which is more efficient for classi-
cally inaccessible parts of phase space.
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one gets the almost equidistant spectrum of the mixedL-R
levels, and in this condition the solution of Eq.~A2! leads to
the expressions~9!, ~10! presented in the main text of th
paper.

The time evolution of any initially prepared state can
described by a superposition of the eigenfunctions of
discrete and continuous spectra with time dependent pha
For the potential~1! with b@1 the initial finite motion, i.e.,
the initial density distribution

r~ t !5E
X1

X2
uC~X,t !u2dX, ~A3!

concentrated in theL well at t50 decreases exponentiall
with time

r~ t !5r~0!exp~2ht !. ~A4!

Equation~A4! signifies that the wave functions of quasist
tionary states have the form

Cn~X,t !5Cn~X!exp@~2 i«n2hn/2!t#, ~A5!

and the eigenvalues are complex and lies on the lower h
space of («,h) plane. The quantization of the stationa
states of a discrete spectrum is performed by the requirem
@19#

uC~X,t !u2→0 at uXu→`.

This condition is impossible to impose on quasistation
states, since the wave functionCn(X) is exponentially in-
creased in the region of«@V(X). The physically meaningful
boundary condition noted first by Zeldovich@21# for quasis-
tationary states can be written as a conservation law for
flux probability from theL well through the barrier. The
difference between stationary and quasistationary states
appears as it should ath→0.

The expansion of the initially quasistationary state
dominated by the continuum spectrum eigenfunctions w
the energies close to the real parts of the eigenvalues«n .
These eigenfunctions have the form

Ck~X!5S A~k!fk
0~X!, X,Xm

A2

p
sin„kX1d~k!…, X.Xm

D , ~A6!

whereXm is the left turning point of theR well, the localized
wave functionfk

0 is normalized to unity, and the phase
given as

d~k!5d02arctan
k2

k2k1
, ~A7!

and d0 is a k-independent component,k15A2m«n, k2
5k1hn/4«n . For the eigenfunctions with the energies« and
«8 close to«n we get

or
7-6
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E
2`

X

fk~X8!fk8~X8!dX8

5
1

2m S 1

«2«8
D S fk8

dfk

dX
2fk8

dfk8

dX D . ~A8!

From Eqs.~A6!, ~A7!, and ~A8! in the limit «2«8→0 we
get

A2~k!5
2

p
A2«n

m

hn

4~«2«n!21hn
2

. ~A9!

Expressions~A7! and ~A9! are valid for a continuous spec
trum, for discrete levels the phase shift as well is govern
by the probability flux from theR well into classically for-
bidden region, and instead of Eq.~A7! it leads to

d5arctanARnb
1

«n2«nm
, ~A10!

and instead of Eq.~A9! one can easily find

A2~«nm!5
2

p

ARnb

b~«n2«nm!21Rn

. ~A11!

Note that Eq.~A11! has almost the same form as Eq.~A9!,
although it depends on discrete energy levels, and besid
has a different coefficient due to different normalization co
dition.
-

s

bo

r-

03621
d

it
-

The relation~A9! shows that the probability density of th
continuous spectrum eigenstates exhibits the Lorentzian
tribution around the real part of the quasistationary eigenv
ues«n . Expressions~A9!–~A11! are equivalent to the spec
tral distribution~18! presented in the main body of the pape

A few words concerning numerical results have been p
sented in the captions of Figs. 1–3. The calculations h
been performed to check:~i! semiclassical approximation fo
the model potential~1!; ~ii ! the spectral distribution~18!.

We used the numerical diagonalization of the Hamilton
matrix in the basis set of trial functions, which include
so-called instanton wave functions of theL well ~see Ref.
@20#!, and the WKB functions ofR well. This basis was
orthonormalized by using standard Schmidt method@26#. For
theL well, highly excited states near the barrier top have a
been included. In all numerical calculations we set the va
of a0 ~so-called defect of a resonance! as zero. All results
presented in the figures do not depend on this partic
choice.

The numerical results confirm that Eq.~18! is quite accu-
rate in the whole range ofL where the transition from co
herent oscillations to exponential decay occurs. Note t
sinceR levels with the negative energy are not mixed withL
levels, and besides the resonance region is sufficiently
row (Rn50.01), we need not diagonalize huge matrices. F
our purposes the diagonalization of the matrix 300033000 is
more than sufficient to find eigenvalues in the resonance
gion around then50 L level.
m.
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